
Image Processing for the Grid: A Toolkit for Building Grid-enabled Image
Processing Applications.

�

Shannon Hastings, Tahsin Kurc, Stephen Langella, Umit Catalyurek, Tony Pan, and Joel Saltz

Department of Biomedical Informatics
The Ohio State University

Columbus, OH, 43210

Abstract

Analyzing large and distributed image datasets is a cru-
cial step in understanding the structural and functional
characteristics of biological systems. In this paper, we
present the design and implementation of a toolkit that al-
lows rapid and efficient development of biomedical image
analysis applications in a distributed environment. This
toolkit employs the Insight Segmentation and Registration
Toolkit (ITK) and Visualization Toolkit (VTK) layered on a
component-based framework. We present experimental re-
sults on a cluster of workstations

1 Introduction

Rapidly advancing imaging sensor technologies have
made it possible for researchers in the physical and bio-
logical sciences to observe biological systems and measure
their structural and functional characteristics at great reso-
lutions. The anatomic structures described by the imagery
vary in scale from macroscopic (e.g., radiology studies) to
microscopic (virtual slides from biopsies). The imagery
can be two or three-dimensional; the images can be static
or time dependent (e.g., functional MR, follow-up imaging
studies for treatment assessment). There is an increasing
recognition of the need to support the information service
needs posed by overlapping collections of work groups and
organizations. Multi-institutional collaborative biomedical
research studies involve the need to pool and support dis-
tributed analysis of imaging information, in addition to epi-
demiological, clinical, and laboratory information. While a
passive viewing of information can be achieved by the tra-
ditional imaging studies, the capability to reconstruct and
analyze the data is needed for effective analysis of biolog-

�

This research was supported in part by the National Science Foun-
dation under Grants #ACI-9619020 (UC Subcontract #10152408), #EIA-
0121177, #ACI-0203846, #ACI-0130437, #ACI-9982087, Lawrence Liv-
ermore National Laboratory under Grant #B517095 (UC Subcontract
#10184497).

ical structures. In order to realize this capability, software
tools are needed for acquisition, storage, and interactive ma-
nipulation in distributed environments of large datasets gen-
erated by measurements or computational models.

In this paper we present a framework for developing im-
age analysis applications in a Grid environment. Within
this framework, we describe the design and implementa-
tion of the Image Processing for the Grid (IP4G) middle-
ware. The goal of this middleware is to enable rapid and ef-
ficient implementation of image analysis methods in a dis-
tributed storage and computational environment. We ad-
dress this goal by layering two widely used image analy-
sis and visualization toolkits, namely the Insight Segmenta-
tion and Registration Toolkit (ITK) from National Library
of Medicine [11] and Visualization Toolkit (VTK) [16], on
a component-based infrastructure called DataCutter [3].

2 Motivating Applications

In this section we present two application scenarios and
discuss their requirements. These scenarios are based on
the applications we are developing in collaboration with
Radiology at OSU and the Telescience and BIRN group
at National Center for Microscopy and Imaging Research
(NCMIR).

Dynamic Contrast Enhanced MRI Studies. State-of-
the-art research studies in dynamic contrast enhanced mag-
netic resonance imaging (DCE-MRI) [12] involve use of
large datasets, which consist of time dependent, multidi-
mensional, heterogeneous collections of data from multi-
ple imaging sessions. For image analysis, we can identify
several use cases: 1) A scientist retrieves a subset of im-
ages stored on a remote image server from a single DCE-
MRI session and performs viewing and analysis of image
data on their local workstation. In this simplest scenario,
the scientist can perform some standard set of image pro-
cessing techniques on an individual data set. 2) She can
extend the analysis to longitudinal studies and apply several

1



different statistical analysis methods on data from multiple
different studies to view the effects of a treatment method
across a patient group. 3) She wants to iteratively execute
image-processing algorithms on the datasets in order to de-
termine which parameters maximize the effectiveness of a
particular image operation (e.g., registration, segmentation,
statistical analysis). This scenario corresponds to a param-
eter study. Allowing for parameter studies enables the re-
searcher to quickly quantify the results and to determine an
algorithm’s efficacy for a target study.

Telemicroscopy: Remote Query of Large Digitized
Microscopy Slides. The DCE-MRI studies involve pro-
cessing across several hundreds or thousands of relatively
small (a few megabytes in size) images. However, datasets
in telemicroscopy applications (such as those targeted by
Telescience and BIRN [4] and telepathology) consist of im-
ages that are very large in size. An image acquired by high-
power light or electron microscopes is composed of many
smaller tiles that are montaged together to form the whole
image. Advanced microscopes can produce images with
resolutions of 40,000 by 40,000 pixels or higher and sizes
ranging from several hundred megabytes to several tens of
gigabytes (compressed). A challenging issue is to be able to
remotely query a subset of a microscopy image and gener-
ate an image at desired resolution by subsampling. For in-
stance, miscroscopy images in the Telescience project1 are
stored on storage systems managed by Storage Resource
Broker2. A query specifies an image dataset (which may
consist of a single TIFF image file containing stacked im-
ages of tiles or many TIFF files each corresponding to a tile
in the whole image), a rectangular region in the image, and
a subsampling factor for the desired resolution. Evaluat-
ing the query can involve retrieving the tiles that intersect
with the query window, processing these tiles to generate
a clipped and subsampled image, and storing the resulting
image back in SRB for further analysis.

As these two application scenarios depict, the amount of
data per dataset can be very large in some imaging studies,
thus making it difficult to transfer and process the data of
interest in a distributed setting. In other imaging studies,
the volume of data per data set may be small, but a large
ensemble of datasets should be queried and processed. It
can also entail carrying out computational analysis, such as
a complete parameter study using a particular image analy-
sis algorithm or a set of algorithms, on the data in order to
derive conclusions.

3 System Architecture

In order to realize the scenarios in Section 2, a frame-
work is needed 1) to have the ability to integrate im-

1https://gridport.npaci.edu/Telescience/
2http://www.npaci.edu/DICE/SRB/index.html

ages from multiple studies and modalities in one or more
databases, 2) to implement the functionality to submit one
or more queries against such image databases, and 3) to
be able to quickly process very large images and image
datasets with thousands of images. The overall architecture
of the framework proposed in this paper to address these
issues are shown in Figure 1.

WAN

Data Acquisition Image Pre-processing

SegmentationMulti-modal
Registration

Image Data
Micro-CT

Reconstruction
Visualization

Segmentation
Registration

Feature
Analysis

Database
Creation Data Analysis

Interactive Client Queries

Remote ClientRemote Client ………..…
Image Data

MR
Image Data

3D Microscopy

Image
Manipulation

…High-performance
Computing Platforms …

Storage Area Network
Storage Systems

Storage
Service

Indexing
Service

Distributed Execution
Service

Data Caching
Service

Query Scheduling
Service

Meta-data Management
Service

Data Analysis Programming and Runtime Support

Globus

High-performance
Computing Platforms

SRB

PACS

Storage
Clusters

Disk-based
Storage Clusters

Figure 1. System Architecture.

In this framework, the storage service encapsulates effi-
cient storage methods for image datasets. Given the signif-
icant disparity between the bandwidths of processor, mem-
ory, and disk, a runtime system must provide low-latency
retrieval of large volumes of data from the storage system
to efficiently support user queries. This service supports
data declustering and clustering methods for effective or-
ganization and placement of datasets on a storage system.
The indexing service provides support for efficient index-
ing of input image datasets and features extracted from
the image datasets. Biomedical image datasets are multi-
dimensional and multi-resolution, thus an instance of this
service can implement spatial indexing methods (e.g., R-
trees and their variants) for accessing multi-dimensional
datasets. The meta-data management service provides a
unified mechanism for efficient handling of meta-data as-
sociated with datasets (e.g., image types, resolution of im-
age, functional information, and the distribution of datasets
across a storage system). The data caching service sup-
ports methods for detection of common regions of interest
and processing requirements among queries, and use of in-
termediate results cached on disk and in memory. The query
scheduling service performs scheduling of multiple queries
for execution in the system. It also constructs sub-queries
for requests that cannot be answered from data cached in the

2



data caching service. Its task is to schedule the sub-queries
to data servers in the system so as to minimize the overall
response time. Application dependent processing of large
volumes of data is a critical component in analysis and vi-
sualization of image data. The distributed execution service
should make it possible to apply user-defined processing
on data as it progresses from data sources to clients. The
design and implementation of storage, indexing, caching,
and query scheduling services have been discussed in ear-
lier work [3, 2, 17]. In the next section, we focus on an im-
plementation of the distributed execution service to support
quick and efficient development of image analysis methods
in a distributed environment.

4 Distributed Execution Service

We have developed a prototype implementation of the
distributed execution service as an integration of four
pieces: 1) an image processing toolkit, 2) a visualization
toolkit, 3) a runtime system for execution in a distributed
environment, and 4) an XML based schema for process and
workflow description. In the current implementation, we
have used VTK and ITK frameworks for image processing
and visualization and a component-based framework, called
DataCutter [3], for runtime support.

4.1 DataCutter

DataCutter supports a filter-stream programming model
for developing data-intensive applications. In this model,
the application processing structure is implemented as a set
of components (referred to as filters) that exchange data
through a stream abstraction. The interface for a DataCutter
filter consists of three functions: (1) an initialization func-
tion (init), in which any required resources such as mem-
ory for data structures are allocated and initialized, (2) a
processing function (process), in which user-defined oper-
ations are applied on data elements, and (3) a finalization
function (finalize), in which the resources allocated in init
are released.

Filters are connected via logical streams, which denote
a uni-directional data flow from one filter (i.e., the pro-
ducer) to another (i.e., the consumer). A filter is required
to read data from its input streams and write data to its out-
put streams only. We define a data buffer as an array of data
elements transferred from one filter to another. The current
implementation of the logical stream delivers data in data
buffers, whose size is specified by the application. The cur-
rent runtime implementation provides a multi-threaded exe-
cution environment and uses TCP for point-to-point stream
communication between two filters placed on different ma-
chines.

The overall processing structure of an application is re-
alized by a filter group, which is a set of filters connected
through logical streams. An application query is handled as
a unit of work (UOW) by the filter group. Filters in a filter
group can be placed onto computational resources to mini-
mize communication and computation overheads. Process-
ing of data through a filter group can be pipelined. Mul-
tiple filter groups can be instantiated simultaneously and
executed concurrently. Work can be assigned to any filter
group. While UOWs assigned to a single filter group are
processed in first-in-first-out order, there is no ordering be-
tween different filter groups. A transparent filter copy is a
copy of a filter in a filter group. The filter copy is transpar-
ent in the sense that it shares the same logical input and
output streams of the original filter. If copies of a filter
that maintains state (e.g., accumulator) are to be created, an
application-specific combine filter is needed to make sure
that the output of a unit of work should be the same, regard-
less of the number of transparent copies.

The filter runtime system maintains the illusion of a
single logical point-to-point stream for communication be-
tween a logical producer filter and a logical consumer fil-
ter. It is responsible for scheduling buffers in a data stream
among the transparent copies. For distribution between
transparent copies, the runtime system implements a De-
mand Driven (DD) mechanism based on buffer consump-
tion rate. DD policy aims to send buffers to the filter that
will process them fastest. When a consumer filter starts pro-
cessing of a buffer received from a producer filter, it sends
an acknowledgement message to the producer filter to in-
dicate that the buffer is being processed. A producer filter
chooses the consumer filter with the minimum number of
unacknowledged buffers to send a data buffer.

4.2 Visualization Toolkit (VTK) and Insight
Segmentation and Registration Toolkit (ITK)

VTK [16] provides a community standard toolkit for vi-
sualizing images and geometry. This toolkit has well de-
fined underlying data structures which pre-written process-
ing methods can operate on. There are basic data structures
and methods for representing and accessing structured and
unstructured image data, and various types of geometry. Al-
though VTK does not provide mechanisms for serializing
its internal objects, it can read and write all of its basic data
representation types. The toolkit is also designed to support
an object oriented paradigm which allows base functions to
be chained together in a program.

ITK from National Library of Medicine [11] provides li-
braries to enable image processing algorithms focusing in
the areas of segmentation and registration. The focus of the
toolkit is to create a common code base for containing well
published textbook algorithms as well as for researchers to

3



work on new algorithms. ITK is similar to VTK in many
ways. It is also an object-oriented framework and has ba-
sic data structures and basic function types for image pro-
cessing. However, ITK lacks visualization capabilities as
its focus is on segmentation and registration. The frame-
work has a layer that allows it to integrate VTK processing
with it. This enables using VTK for particular pieces of
the processing pipeline, visualization for example, and ITK
for other pieces, segmentation and registration for example.
ITK does not currently provide any mechanisms for parallel
and distributed computing.

4.3 Layering VTK and ITK on DataCutter

In our infrastructure, an image analysis application is
represented as a filter group consisting of filters that process
the data in a pipelined fashion. That is, VTK and ITK func-
tions constituting the image processing and visualization
structure of the application are implemented as application
components using DataCutter filter support. These applica-
tion components operate in a dataflow style, where they re-
peatedly read buffers from their inputs, perform application-
defined processing on the buffer, and then write it to the
output stream. The corresponding dataflow (i.e., the lay-
out of the application components and their interaction) is
expressed using an XML schema.

We have developed a simple abstraction layer that pro-
vides isolation between DataCutter and ITK/VTK. This en-
ables the integration between different toolkits to be inde-
pendent from any future changes to their underlying imple-
mentation. We here present the current underlying hierar-
chy to write filters that contain ITK/VTK code to be exe-
cuted in a distributed environment. DataCutter provides a
base filter class, which encapsulates the init, process, and
finalize methods. A ip4gBasicFilter class extends the Dat-
aCutter base filter class, and provides the processFilter and
delete functions that should be customized by the applica-
tion developer using VTK/ITK functions. It also imple-
ments methods for processing of XML parameter blocks.
The parameter block enables each filter to request variables
which can be provided in the workflow model description.
Another layer of filters is provided to provide default im-
plementations of init, process, and finalize methods for var-
ious VTK and ITK basic object types. The processFilter
function is called in the default implementation of the pro-
cess method, and the delete function is called in the final-
ize method. These filters provide for the basic data mar-
shalling and demarshalling of most generic VTK/ITK data
filter types.

As an example, a user would like to create a filter in the
IP4G system which could take in image data, subsample it,
and pass it to the next filter (as shown in Figure 2). The
user would need to create a class which extends the base

#include “dcvtkImageToImageFilter.h”
#include “vtkImageShrink3D.h”

class myShrinkF : public dcvtkImageToImageFilter
�

vtkImageShrink3D *iShrink;
public:

myShrinkF()
�

iShrink = vtkImageShrink3D::New(); �
˜myShrinkF()

�
iShrink- � Delete(); �

virtual void processFilter();
� ;

void myShrinkF::processFilter()
�

int sFactorX = getIntParamValue(“shrinkFactorX”);
int sFactorY = getIntParamValue(“shrinkFactorY”);
int sFactorZ = getIntParamValue(“shrinkFactorZ”);
// put that data into the shrink filter to be downsampled)
iShrink- � SetShrinkFactors(sFactorX,sFactorY,sFactorZ);
iShrink- � SetInput(input);
iShrink- � Update();
output = imageShrink- � GetOutput();

� ;

Figure 2. An example filter.

class. The next step would be to implement the processFil-
ter method. In this particular case, the VTK method called
vtkImageShrink3D is used as the subsampling code. The
user simply needs to grab the input data, call the appropri-
ate VTK functions, and set the output data. input and output
are defined in the base class and correspond to the input and
output streams to and from the user-defined processFilter
method. When a data buffer is received from a producer
filter, the deserialization method in the base dcvtkImage-
ToImageFilter class is called to create the VTK data struc-
ture which is pointed to by input. When the processFilter
method returns, the data structure pointed to by output is
serialized into a data buffer and sent to the consumer filter
of this filter.

4.4 Dataflow Description

We have adopted the process modeling schema de-
veloped for the Distributed Process Management System
(DPM) [9]. The DPM model allows for a workflow to be
described in XML. We have chosen XML as it is widely
accepted as a standard way of describing semantic informa-
tion by Web and Grid services communities, and a range of
tools are freely available for parsing and validating XML
documents. In DPM, the execution of an application in a
distributed environment is modeled by a directed acyclic
task graph of processes. This task graph is represented as an
XML document. For our implementation, we have extended

4



� job id=”analyze 1” �
� process group �

� process type = “A” placement = “host1” id = 0 �
� parameter block �

� parameter name = “isovalue” val = 0.7/ �
� parameter name = “smooth” val = true/ �

� /parameter block �
� process type = “B” �

� parameter block � ... � /parameter block �
� transparent copies count=2 �

� placement=”host2” count=1/ �
� placement=”host3” count=1/ �

� /transparent copies �
� process type=”D” placement=”host4” id=1 �

� parameter block � ... � /parameter block �
� /process �

� /process �
� process type=”C” placement=”host2” �

� parameter block � ... � /parameter block �
� process include id=”1”/ �

� /process �
� /process �

� /process group �
� /job �

Figure 3. The job description of a filter group
in XML.

the DPM schema to allow for transparent copies of filters
and specification of filter placement. A client request in
XML to the runtime infrastructure is defined as a job, whose
description is encoded between � job � and � /job � tags. A
job may contain multiple filter groups. This enables a client
to submit and instantiate multiple filter groups in a single
message. In this paper, we used the same naming conven-
tion for tags as provided by DPM. The � process group �
body defines a filter group within a job. Each filter in the fil-
ter group is described by a � process � element. The name
of the filter is given in the type attribute. The element has
two variables. The placement attribute holds the name of
the host machine the filter is placed on. The placement for
a filter can be determined by the client or by a scheduling
algorithm. The optional Id attribute denotes the unique id
assigned to the filter by the client for that job and used for
reference purposes.

The DPM model recursively represents the data flow de-
pendencies between processes in the XML job definition.
In the example shown in Figure 3, filter A depends on the
output of filters B and C. Hence, the descriptions of those
two filters are given in the � process � block of filter A –
if there is no dependency between two filters, they are rep-
resented at the same level. Filter D is a producer for both
filter B and filter C. There needs to be some way of linking

the filter streams together for the filters that are waiting on
the referenced input from filter D. To accomplish this with
XML, the Id attribute is used for a filter that needs to be
referenced. To create a filter reference we simply add the
tag � process include � with the attribute Id set equal to the
process that it is being referenced. Filter D is described in
the block of filter B and is referenced by its Id in the filter C
description. The input parameters for a filter are defined in
the � parameter block � block. The � transparent copies �
block defines the transparent copies of a filter and their
placement in the system. The number of copies can be de-
termined by the client or a scheduling algorithm.

5 Interaction with Other Grid Services

In a Grid-wide deployment, the services presented in
this paper should be augmented by support for security
and authentication, access to files in a distributed environ-
ment, resource allocation, and resource monitoring. There
is an array of middleware toolkits that can be used for
such support and IP4G can leverage those existing toolk-
its. Globus toolkit3 provides support for resource discovery
and allocation, authentication/authorization, and file trans-
fer (via GridFTP) across multiple administrative domains.
The Metacomputing Directory Service (MDS) of Globus
can be used for resource discovery and allocation. The
meta-data service can make use of the MCAT infrastruc-
ture of Storage Resource Broker (SRB) for storing meta-
data for datasets. SRB provides unix-like I/O interfaces for
distributed collections of files across a wide-area network
and our framework can take advantage of SRB functions
for remote file access. The Network Weather Service [19]
can be used to gather on-the-fly information about resource
availability so as to determine where to instantiate the data
processing components of an image analysis application.

We have chosen DataCutter as the underlying runtime
system of IP4G for two reasons. First, it supports a frame-
work for executing application-specific processing as a set
of components in a distributed environment. Processing,
network and data copying overheads are minimized by the
ability to place filters on different platforms. This capabil-
ity easily enables execution of various services and user-
defined filters in a distributed environment. Second, in
the DataCutter project, we are developing interfaces to the
Globus, SRB, and NWS toolkits. This will allow us to read-
ily use the security, authentication, remote file access, re-
source monitoring and allocation services provided by these
toolkits.

Other high performance computing research projects
such as Condor have a need for process modeling and
data flow description [7]. Condor contains a tool called

3http://www.globus.org

5



DAGMan, which like DPM uses a Directed Acyclic Graph
(DAG) to manage processes whose input and output is de-
pendent on the execution of other processes. Both the Web
Services and Grid Service communities are defining stan-
dard schemas whose respective services will provide in-
terfaces such that they can defined, described, registered,
discovered, and executed [6, 8]. As these standards evolve
within these communities, we plan to evolve the IP4G and
its dataflow description schema such that IP4G applications
can become or interact with both web and grid services.

6 Related Work

The growth of biomedical imaging data, has led to the
development of Picture Archiving and Communication Sys-
tems (PACS) that store images in the DICOM standard for-
mat [10]. PACS supports storage, management, and re-
trieval of image datasets and meta-data associated with the
image data. A client using those systems usually has to re-
trieve the data of interest, often specified through a GUI,
to the local workstation for application-specific processing
and analysis. The effectiveness of imaging studies with
such configurations is severely limited by the capabilities of
the client’s workstation. Advanced analysis techniques and
exploration of collections of datasets can easily overwhelm
the capacity of most advanced desktop workstations.

Manolakos and Funk [13] describe a Java-based tool for
rapid prototyping of image processing operations. This
tool uses a component-based framework, called JavaPorts,
and implements a master-worker mechanism. Oberhu-
ber [15] presents an infrastructure for remote execution of
image processing applications using SGI ImageVision li-
brary, which is developed to run on SGI machines, and Net-
Solve [5]. Dv [1] is a framework for developing applica-
tions for distributed visualization of large scientific datasets
on a computational grid. It is based on the notion of ac-
tive frames, which are application level mobile objects. An
active frame contains application data, called frame data,
and a frame program that processes the data. Active frames
are executed by active frame servers running on the ma-
chines at the client and remote sites. Like these projects,
our work targets distributed execution of image analysis
and visualization applications. However, it differs from
them in that we are developing a services-oriented frame-
work, and the image analysis toolkit presented in this pa-
per builds on a component-based middleware that provides
combined task- and data-parallelism through pipelining and
transparent component copies. VXL and TargetJr [18] are
two toolkits that are mainly used by the image understand-
ing community. The main focus here is usually temporal
sequences of 2D images.

There are a number of projects that target development
of infrastructures for shared access to data and computa-

tion in various areas of medicine, science, and engineering.
Biomedical Informatics Research Network (BIRN) [4] ini-
tiative focuses on support for collaborative access to and
analysis of datasets generated by neuroimaging studies. It
aims to integrate and enable use of heterogeneous and grid-
based resources for application-specific data storage and
analysis. MEDIGRID [14] is another project recently initi-
ated to investigate application of Grid technologies for ma-
nipulating large medical image databases.

7 Experimental Results

We present a preliminary evaluation of the toolkit using
two separate test applications. We used a 22-node Linux
Cluster (referred to as osumed) of Pentium 933 MHz with
512MB main memory and a 6-node Linux Cluster (referred
to here as DC) of Pentium 2.0 GHz with 512MB main
memory. The nodes in each cluster are connected through
Switched Fast Ethernet, while the two clusters are con-
nected to each other over a shared 100MBit Ethernet.

The first set of experiments was performed with an ap-
plication that reads in a 3D time-dependent volume dataset,
generated from an oil reservoir simulation. The application
then extracts an isosurface for each time step of the dataset
and sends it to the client. The pipeline of operations is as
follows: read a time step of data (R), scale the data values
by an integer (S), cast the data values from float to short (C),
generate an isosurface in the volume (I). Each of these steps
is implemented as a separate filter. In the experiments, this
process repeated for all 20 time steps of the example dataset.
In a comparison of the VTK standalone performance to that
of the IP4G implementation, we observed about 25% over-
head when all the filters run on a single machine. This over-
head is the result of data serialization and data copying due
to splitting of processing into separate filters.

Figure 4 shows the performance gain by creating trans-
parent copies of the isosurface extraction filter. In this ex-
periment, the number of transparent copies was varied from
2 to 5. Each transparent copy was executed on a separate
node of the machine. The graph shows that the baseline
run with no IP4G was about 14 seconds. With transpar-
ent copies, we were able to get the runtime down around 7
seconds. This execution time reduction of about half is not
substantial, but we were able to achieve this quickly and
without having to write any specific distributed execution
code. We also expect the constant time overhead incurred
by using the distributed execution service will be shadowed
as datasets are scaled in size and complexity.

Figure 5 shows the performance numbers using two clus-
ters connected across a wide-area network over a shared
100MBit Fast Ethernet. In this experiment, the dataset was
stored on the DC cluster. The first bar shows the total execu-
tion time when the data set is copied from the DC cluster to

6



0

2

4

6

8

10

12

14

16

VTK standalone IP4G with 2 Iso IP4G with 3 Iso IP4G with 4 Iso IP4G with 5 Iso

Transparent Copies

E
xe

cu
ti

o
n

 T
im

e 
(s

ec
o

n
d

s)


Figure 4. Execution of the application with
transparent copies of the isosurface extrac-
tion filter. The number of transparent copies
is varied from 2 to 5 and each transparent
copy is placed on a different node of the clus-
ter.

0

2

4

6

8

10

12

14

16

18

Data Copy and
Compute

RCSI on DC R on DC RC on DC RCI on DC

Placement

E
xe

cu
ti

o
n

 T
im

e 
(s

ec
o

n
d

s)


Figure 5. Data access and processing in a
wide-area environment. One cluster (os-
umed) is located at the Ohio Supercomputer
Center, the other one (DC) at Biomedical In-
formatics.

osumed cluster, where the client is located, and processed
on that cluster. The execution time is the sum of the data
copying and processing time. If all of the processing can
be run on the DC cluster using multiple transparent copies,
the execution time goes down, as expected. The last three
bars in the figure show the execution times when the filters
are placed on both clusters. As seen in the figure, executing
some of the filters on the DC cluster and some of them on
the osumed cluster achieves better performance than copy-
ing the data and performing the operation locally. Being
able to place the filters across two clusters is especially ben-
eficial when the data server becomes overloaded.

The next set of experiments uses an image processing
pipeline for processing DCE-MR images [12]. The dataset
consists of 14,400 images, each of which is 100KB, for a
total of 1.4GB. The processing pipeline contains stages, im-
plemented as filters, to read the image (R), supersample it
by a factor of 2 (S), gaussian smooth (G), clip out a sub-
image (C), and threshold between a predetermined set of
isovalues (T). We ran this pipeline in two different ways: a

completely data parallel model and a hybrid model that is
a combination of task and data parallelism. The data par-
allel model processes all the data for one processing stage
and caches the result data from that stage on disk. Copies
of the corresponding filter are created on all the processors.
After all the data has been processed in a stage, the next
stage reads the cached data and processes it for the next fil-
ter stage and so on. The hybrid case, on the other hand,
creates transparent copies of each filter on all nodes. All
filters are run at the same time and data is processed in a
pipelined fashion. The data travel from one filter to the next
by a demand driven scheduling process, as described in Sec-
tion 4.1.

Figure 6 shows the results of the data parallel vs. hybrid
model for a single cluster (osumed) and multi-cluster (os-
umed and DC) setup where data is partitioned uniformly
across the nodes. It also demonstrates how the pipeline
scales when the data and computation are partitioned with
varying number of nodes. The amount of time it takes to
process a single image is between 2 to 2.7 seconds for the
data parallel model, and is relatively constant with respect
to the number of nodes. The graph shows that the hybrid
approach is much faster than the purely data parallel ap-
proach. We attribute this to extra cache I/O needed to create
a completely data parallel process when compared to that of
a hybrid pipe-and-filter approach.

Figure 7 shows the performance of data parallel model vs
hybrid approach when a second cluster (DC) is introduced
as an additional compute only resource. In this experiment,
the data is stored on 4, 8, and 16 nodes of osumed and 4
nodes from DC are added as compute only resources. As
seen from the figure, hybrid approach performs better than
completely data parallel approach in this case as well. We
should note that since the second cluster depends on the first
as data source, slow data transfer over network can decrease
the speedup. In the case where the bandwidth of the shared
network is very low, data partitioning and processing of data
locally can be more effective.

8 Conclusions

We presented the design of a framework for supporting
image analysis applications in the Grid environment. We
described the implementation of a toolkit, which builds on
a component-based framework. This toolkit aims to pro-
vide support for rapid development and efficient execution
of image analysis applications using ITK and VTK in a dis-
tributed environment. Our results show that the toolkit can
achieve good performance by enabling combined task and
data parallelism in a chain of processing operations.

7



0

100

200

300

400

500

600

700

1 2 4 8 16

Number of Nodes

E
xe

cu
ti

o
n

 T
im

e 
(m

in
u

es
)

Data Parallel, Single Cluster

Hybrid, Single Cluster

Data Parallel, 2 Clusters

Hybrid, 2 Clusters

Figure 6. Data parallel and hybrid approaches
for a single cluster and multi-cluster setup. In
the two-cluster case, the ratio of the nodes on
osumed and DC is 3 to 1.

0

10

20

30

40

50

60

70

80

4 8 16

Number of I/O Nodes

E
xe

cu
ti

o
n

 T
im

e 
(m

in
u

te
s)



Data Parallel

Hybrid

Figure 7. Performance of data parallel and
hybrid approaches, when 4 nodes from DC
are added as compute only nodes. In this
case, the total number of compute nodes is
the number of I/O nodes on osumed plus 4.

References

[1] Martin Aeschlimann, Peter Dinda, Julio Lopez, Bruce
Lowekamp, Loukas Kallivokas, and David O’Hallaron. Pre-
liminary report on the design of a framework for distributed
visualization. In Proceedings of the International Con-
ference on Parallel and Distributed Processing Techniques
and Applications (PDPTA’99), pages 1833–1839, Las Vegas,
NV, June 1999.

[2] Henrique Andrade, Tahsin Kurc, Alan Sussman, and Joel
Saltz. Active Proxy-G: Optimizing the query execution pro-
cess in the Grid. In Proceedings of the 2002 ACM/IEEE
SC02 Conference. ACM Press, November 2002.

[3] Michael Beynon, Chialin Chang, Umit Catalyurek, Tahsin
Kurc, Alan Sussman, Henrique Andrade, Renato Ferreira,
and Joel Saltz. Processing large-scale multidimensional data
in parallel and distributed environments. Parallel Comput-
ing, 28(5):827–859, May 2002. Special issue on Data Inten-
sive Computing.

[4] Biomedical Informatics Research Network (BIRN).
http://www.nbirn.net.

[5] Henri Casanova and Jack Dongarra. NetSolve: a network
enabled server for solving computational science problems.
The International Journal of Supercomputer Applications
and High Performance Computing, 11(3):212–223, 1997.

[6] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke. The phys-
iology of the grid: An open grid services architecture for
distributed systems integration. http://www.globus.org/ogsa,
2002.

[7] James Frey, Todd Tannenbaum, Ian Foster, Miron Livny,
and Steven Tuecke. Condor-G: A computation management
agent for multi-institutional grids. In Proceedings of the
Tenth IEEE Symposium on High Performance Distributed
Computing (HPDC10). IEEE Press, Aug 2001.

[8] S. Graham, S. Simeonov, T. Boubez, D. Davis, G. Daniels,
Y. Nakamura, and R. Neyama. Building Web Services with
Java: Making Sense of XML, SOAP, WSDL, and UDDI.
SAMS Publishing, 2002.

[9] S. Hastings. Distributed architectures: A java-based process
management system. Master’s thesis, Computer Science De-
partment, Rensselear Polytechnic Institute, 2002.

[10] H.K.K. Huang, G. Witte, O. Ratib, and A.R. Bakker. Picture
Archiving and Communication Systems (PACS) in Medicine.
Springer-Verlag, 1991.

[11] National Library of Medicine. Insight Segmentation and
Registration Toolkit (ITK). http://www.itk.org/.

[12] M.V. Knopp, F.L. Giesel, H. Marcos, H. von Tengg-Kobligk,
and P. Choyke. Dynamic contrast-enhanced magnetic res-
onance imaging in oncology. Top. Magn Reson. Imaging,
12(4):301–308, 2001.

[13] E.S. Manolakos and A. Funk. Rapid prototyping of
component-based distributed image processing applications
using javaports. In Workshop on Computer-Aided Medical
Image Analysis, CenSSIS Research and Industrial Collabo-
ration Conference, 2002.

[14] MEDIGRID. http://creatis-www.insa-
lyon.fr/MEDIGRID/home.html.

[15] M. Oberhuber. Distributed high-performance image process-
ing on the internet. Master’s thesis, Technische Universitat
Graz, 2002.

[16] Will Schroeder, Ken Martin, and Bill Lorensen. The Visual-
ization Toolkit: An Object-Oriented Approach To 3D Graph-
ics. Prentice Hall, 2nd edition, 1997.

[17] Matthew Spencer, Renato Ferreira, Michael Beynon, Tahsin
Kurc, Umit Catalyurek, Alan Sussman, and Joel Saltz. Ex-
ecuting multiple pipelined data analysis operations in the
Grid. In Proceedings of the 2002 ACM/IEEE SC02 Con-
ference. ACM Press, November 2002.

[18] TargetJr and VXL. http://www.esat.kuleuven.ac.be/ targetjr.

[19] R. Wolski, N. Spring, and J. Hayes. The network weather ser-
vice: A distributed resource performance forecasting service
for metacomputing. Journal of Future Generation Comput-
ing Systems, 15(5-6):757–768, 1999.

8


